Home
Class 12
MATHS
C0C2 + C1C3 +C2C4+……..+C(n-2) Cn =...

`C_0C_2 + C_1C_3 +C_2C_4+……..+C_(n-2) C_n = `

A

`""^(2n)C_(n-2)`

B

`""^(2n)C_n`

C

`""^(2n)C_(n-1))`

D

`""^(2n)C_(2n -2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise EXERCISE - II|109 Videos
  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|95 Videos
  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|25 Videos
  • AREAS

    AAKASH SERIES|Exercise Exercise-3.2|21 Videos
  • CIRCLE

    AAKASH SERIES|Exercise EXERCISE -1.4|38 Videos

Similar Questions

Explore conceptually related problems

Prove that C_0.C_3 + C_1.C_4 + C_2.C_5 + …..+C_(n-3).C_n = ""^(2n)C_(n +3)

C_0 C_1+C_1 C_2 + C_2 C_3+…+ C_(n-1) C_n=

Prove that (C_0 + C_1) (C_1 + C_2) …..(C_(n-1) + C_n) = ((n+1)^n)/(n!) (C_1.C_2.C_3……C_n)

C_1 + 4.C_2 +7.C_3 +…….+(3n-2).C_n=

2. C_2 + 6. C_3 + 12. C_4 +….. + n (n-1) . C_n=

If C_0, C_1, C_2 ,……..C_n are the coefficient in the expansion of (1 + x)^n then show that C_0 C_r + C_1 C_(r + 1) + C_2 C_(r + 2) + ………..+ C_(n-r).C_n = ((2n)!)/((n-r)!(n+r)!)

3. C_0 + 7. C_1 + 11. C_2 +…...+ (4n+3) . C_n=

AAKASH SERIES-BINOMIAL THEOREM-EXERCISE - I
  1. If the coefficients ""^nC4, ""^nC5, ""^nC6 of (1 +x)^n are in A.P. the...

    Text Solution

    |

  2. C0 + 2.C1 + 4.C2 + …….+Cn.2^n = 243 , then n =

    Text Solution

    |

  3. 1/2. ""^nC0 + ""^nC1 + 2. ""^nC2 + 2^2. ""^nC3 + …….+ 2^(n-1) . ""^nCn...

    Text Solution

    |

  4. ""^((2n + 1))C0 + ""^((2n+ 1))C1 + ""^((2n + 1))C2 + ……+""^((2n + 1))C...

    Text Solution

    |

  5. ""^((2n + 1))C0 - ""^((2n+ 1))C1 + ""^((2n + 1))C2 - ……+""^((2n + 1))C...

    Text Solution

    |

  6. ((1 + ""^nC1 + ""^nC2 + ""^nC3+…….+nCn)^2)/(1 + ""^(2n)C1 + ""^(2n)C2 ...

    Text Solution

    |

  7. ""^21C0 + ""^21C1 + ""^21C2 + ……..+ ""^21C10 =

    Text Solution

    |

  8. C0^2 + C1^2 + C2^2 + ………+C25^2 =

    Text Solution

    |

  9. Prove that (""^(2n)C(0))^(2)-(""^(2n)C(1))^(2)+(""^(2n)C(2))-(""^(2n...

    Text Solution

    |

  10. C0C2 + C1C3 +C2C4+……..+C(n-2) Cn =

    Text Solution

    |

  11. If the coefficients of x^2 and x^4 in the expansion of (x^(1/3) + (2)/...

    Text Solution

    |

  12. Sum of the coefficients of (1+ x/3 + (2y)/(3))^12

    Text Solution

    |

  13. Sum of coefficients of x^(2r) , r = 1,2,3…. in (1+x)^n is

    Text Solution

    |

  14. Sum of coefficients of terms of even powers of x in (1 - x + x^2 - x^...

    Text Solution

    |

  15. Sum of coefficients of terms of odd powers of x in (1 - x + x^2 - x^3)...

    Text Solution

    |

  16. The range of x of which the expansion ( 9 + 25x^2)^(-6//5) is valid is

    Text Solution

    |

  17. If the expansion (4a - 8x)^(1//2) were to possible then

    Text Solution

    |

  18. For |x| lt 1/2 , the value of the fourth term of (1 - 2x)^(-3//4) is

    Text Solution

    |

  19. The coefficient of x^7 in (1 + 2x + 3x^2 + 4x^3 + …… "to " oo)

    Text Solution

    |

  20. 1+ (1)/(10^2) + (1.3)/(1.2). (1)/(10^4) + (1.3.5)/(1.2.3) . (1)/(10^6)...

    Text Solution

    |