Home
Class 12
MATHS
Let z=costheta+isintheta. Then the value...

Let `z=costheta+isintheta`. Then the value of `sum_(m->1-15)Img(z^(2m-1))` at `theta=2^@` is:

A

`(1)/(sin 2^(@))`

B

`(1)/(3sin 2^(@))`

C

`(1)/(sin 2^(@))`

D

`(1)/(4sin 2^(@))`

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 3|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 4|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 1|55 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

Let z=cos theta+i sin theta. Then the value of sum_(m rarr1-15)Img(z^(2m-1)) at theta=2^(@) is: 1.(1)/(sin2^(@)) 2.(1)/(3sin2^(@))3*(1)/(sin2^(@))4*(1)/(4sin2^(@))

Let z=cos theta+i sin theta then the value of sum_(m=1)^(30)Im(z^(2m-1)) at theta=2^(@) is.

Knowledge Check

  • Let z = cos theta + isin theta . Then the value of sum_(m=1)^(15) Im(z^(2m-1) ) at theta = 2^(@) is

    A
    `(1)/( sin 2^(@))`
    B
    `(1)/( 3 sin 2^(@))`
    C
    `(1)/( 2 sin 2^(@))`
    D
    `(1)/( 4 sin 2^(@))`
  • If z+(1)/(z)=2costheta , then the value of |(z^(2n)-1)//(z^(2n)+1)|

    A
    `|tan ntheta|`
    B
    `tan ntheta`
    C
    `|cotntheta|`
    D
    `cotntheta`
  • Similar Questions

    Explore conceptually related problems

    If z=costheta+isintheta then find (1+z)/(1-z)

    Convert z=2/(1+costheta+isintheta) in a+ib form

    Convert Z=1/(costheta-isintheta) in a+ib form

    If zne0and2+costheta+isintheta=3//z then find the value of 2(z+barz)-|z|^(2)

    Re{(1+costheta+2iSintheta)^-1}=4 then find theta

    If pi lt theta lt 2pi and z=1+costheta+isintheta , then find the value of |z|.