Home
Class 12
MATHS
If omega is a complex cube root of unity...

If `omega` is a complex cube root of unity, then the value of the expression `1(2-omega)(2-omega^2)+2(3-omega)(3-omega^2) +...+(n-1) (n-omega)(n-omega^2) (n>=2) ` is equal to (A) `(n^2(n+1)^2)/4 - n` (B) `(n^2(n+1)^2)/4 +n` (C) `(n^2(n+1))/4 -n` (D) `(n(n+1)^2)/4 -n`

A

`(1)/(4)n^(2) (n+1)^(2)-n`

B

`(1)/(4) n^(2) (n+1)^(2) + n`

C

`(1)/(4) n^(2) (n+1) - n`

D

`(1)/(4)n(n+1)^(2)-n`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 8|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 9|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 6|1 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity,then the value of the expression 1(2-omega)(2-omega^(2))+2(3-omega)(3-omega^(2))+...+(n-1)(n-omega)(n-omega^(2))(n-omega^(2))(n>=2) is equal to (A) (n^(2)(n+1)^(2))/(4)-n( B) (n^(2)(n+1)^(2))/(4)+n( C) (n^(2)(n+1))/(4)-n(D)(n(n+1)^(2))/(4)-n

If omega is a complex cube root of unity then the value of (1+omega)(1+omega^(2))(1+omega^(4)).......2n terms-

Knowledge Check

  • If omega is an imaginary cube root of unity, then the value of (2 - omega )(2 - omega^(2) ) + 2(3 - omega )(3 - omega^(2)) + .... .... + (n - 1)(n - omega)(n -omega^(2)) is

    A
    `(n^(2))/4(n+1)^(2)-n`
    B
    `(n^(2))/4(n+1)^(2)+n`
    C
    `(n^(2))/4(n+1)^(2)`
    D
    `(n^(2))/4(n+1)^(2)-n`
  • If omega is a complex cube root of unity, then for positive integral value of n, the product of omega.omega^2.omega^3...omega^n will be

    A
    `(1-lsqrt3)/2`
    B
    `-(1-lsqrt3)/2`
    C
    1
    D
    Both (2) and (3)
  • The value of the expression 1.(2 - omega)(2-omega^2)+2.(3-omega)(3-omega^2)+ .........+(n-1)(n-omega)(n-omega^2) , where omega is an imaginary cube root of unity is

    A
    `{(n(n+1))/2}^2`
    B
    `{(n(n+1))/2}^2`
    C
    `{(n(n+1))/2}^2 -n`
    D
    None of the above
  • Similar Questions

    Explore conceptually related problems

    If omega is a complex cube roots of unity, then find the value of the (1+ omega)(1+ omega^(2))(1+ omega^(4)) (1+ omega^(8)) … to 2n factors.

    If omega(!=1) is a cube root of unity,then the sum of the series S=1+2 omega+3 omega^(2)+....+3n omega^(3n-1) is

    The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

    Suppose omega ne 1 is cube root of unity. If 1(2-omega) (2-omega^(2)) + 2(3 - omega) (3 - omega^(2)) + ….+ (n-1)(n-omega) (n-omega^(2)) = 33 , then n is equal to ____________

    The value of the expression 1.(2 - omega)(2-omega^2)+2.(3-omega)(3-omega^2)+ .........+(n-1)(n-omega)(n-omega^2) , where omega is an imaginary cube root of unity is