Home
Class 12
MATHS
If |z-25i| lt= 15. then |"maximum " arg(...

If `|z-25i| lt= 15.` then `|"maximum " arg(z) - "minimum " arg(z)|` equals

A

`2 cos^(-1) (3//5)`

B

`2 cos^(-1) (4//5)`

C

`pi//2 + cos^(-1) (3//5)`

D

`sin^(-1) (3//5) - cos^(-1) (3//5)`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 13|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 14|1 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL 11|1 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

If |z-25i|le15 , then |maximum arg(z) - minimum arg(z)| equals (A) (pi)/(2)+cos^(-1)((3)/(5)) (B) sin^(-1)((3)/(5))-cos^(-1)((3)/(5)) (C) 2cos^(-1)((4)/(5)) (D) 2cos^(-1)((1)/(5))

If |z-25i|<=15. then | maximum backslash arg(z)- minimum backslash arg(z)| equals

Knowledge Check

  • arg ( bar(z)) is equal to

    A
    `pi `- arg (z)
    B
    `2 pi -`arg (z)
    C
    `pi +` arg (z)
    D
    `2pi + ` arg (z)
  • If | z -1| = 1, then arg (z)is equal to

    A
    `(1)/(2) arg (z)`
    B
    `(1)/(3) arg (z +1)`
    C
    `(1)/(2) arg (z-1)`
    D
    None of these
  • If z = 1 + i sqrt(3) , then | arg z| + | arg bar(z)| equals

    A
    `(pi)/(3)`
    B
    `(2 pi)/( 3)`
    C
    0
    D
    `(pi)/(2)`
  • Similar Questions

    Explore conceptually related problems

    If |z-25i|<=15, then value of max(arg(z))

    If |z-25i|le15 , then find (i) Maximum |z| (2) Maximum arg (z) (3) minimum |z| (4) Minimum arg (z)

    Among the complex numbers z ,which satisfies |z-25i<=15 then |max.arg z - min arg z| is pi-2tan^(-1)((l)/(m)) then l+m is

    If arg(z) lt 0, then find arg(-z) -arg(z) .

    If arg (z) lt 0 then arg (-z) - arg (z) =