Home
Class 12
MATHS
If i = sqrt(-1), then 4 + 3 (-(1)/(2) + ...

If `i = sqrt(-1)`, then `4 + 3 (-(1)/(2) + i(sqrt(3))/(2))^(127)+5(-(1)/(2)+i(sqrt(3))/(2))^(124)` is equal to

A

`4 sqrt(3)i`

B

`2 sqrt(3)i`

C

`1- sqrt(3)i`

D

`1 + sqrt(3)i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 4 + 3 \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^{127} + 5 \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^{124} \), we can follow these steps: ### Step 1: Identify the complex number Let \( \omega = -\frac{1}{2} + i \frac{\sqrt{3}}{2} \). This is one of the complex cube roots of unity. ### Step 2: Properties of cube roots of unity We know that: 1. \( \omega^3 = 1 \) 2. \( 1 + \omega + \omega^2 = 0 \) ### Step 3: Simplify the powers of \( \omega \) To simplify \( \omega^{127} \) and \( \omega^{124} \), we can reduce the exponents modulo 3: - \( 127 \mod 3 = 1 \) (since \( 127 = 3 \times 42 + 1 \)) - \( 124 \mod 3 = 2 \) (since \( 124 = 3 \times 41 + 1 \)) Thus: - \( \omega^{127} = \omega^1 = \omega \) - \( \omega^{124} = \omega^2 \) ### Step 4: Substitute back into the expression Now we can substitute these values back into the original expression: \[ 4 + 3 \omega + 5 \omega^2 \] ### Step 5: Express \( \omega^2 \) Since \( \omega = -\frac{1}{2} + i \frac{\sqrt{3}}{2} \), we can find \( \omega^2 \): \[ \omega^2 = \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^2 = \left(-\frac{1}{2}\right)^2 + 2\left(-\frac{1}{2}\right)\left(i \frac{\sqrt{3}}{2}\right) + \left(i \frac{\sqrt{3}}{2}\right)^2 \] Calculating this gives: \[ \omega^2 = \frac{1}{4} - i \frac{\sqrt{3}}{2} - \frac{3}{4} = -\frac{1}{2} - i \frac{\sqrt{3}}{2} \] ### Step 6: Substitute \( \omega \) and \( \omega^2 \) into the expression Now we can substitute \( \omega \) and \( \omega^2 \) into the expression: \[ 4 + 3\left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) + 5\left(-\frac{1}{2} - i \frac{\sqrt{3}}{2}\right) \] ### Step 7: Simplify the expression Calculating each term: - \( 3\left(-\frac{1}{2}\right) = -\frac{3}{2} \) - \( 3\left(i \frac{\sqrt{3}}{2}\right) = \frac{3\sqrt{3}}{2} i \) - \( 5\left(-\frac{1}{2}\right) = -\frac{5}{2} \) - \( 5\left(-i \frac{\sqrt{3}}{2}\right) = -\frac{5\sqrt{3}}{2} i \) Combining these: \[ 4 - \frac{3}{2} - \frac{5}{2} + \left(\frac{3\sqrt{3}}{2} - \frac{5\sqrt{3}}{2}\right)i \] This simplifies to: \[ 4 - 4 + \left(-\frac{2\sqrt{3}}{2}\right)i = 0 - \sqrt{3} i \] ### Final Result Thus, the final answer is: \[ \boxed{4\sqrt{3} i} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS|58 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos

Similar Questions

Explore conceptually related problems

If i=sqrt(-1), then 4+5(-(1)/(2)+i(sqrt(3))/(2))^(334)+3(-(1)/(2)+i(sqrt(3))/(2))^(335) is equal to-

If i=sqrt(-)1, then 4+5(-(1)/(2)+(i sqrt(3))/(2))^(334)+3(-(1)/(2)+(i sqrt(3))/(2))^(365) is equal to (1)1-i sqrt(3)(2)-1+i sqrt(3)(3)i sqrt(3)(4)-i sqrt(3)

(1-sqrt(3))/(2+2i)

((-1+sqrt(3)i)/(2))^(100)+((-1-sqrt(3)i)/(2))^(100)=

If z = ((1)/(sqrt(3)) + (1)/(2)i)^(7) + ((1)/(sqrt(3))-(1)/(2)i)^(7) , then

If i=sqrt(-1) , then 4+5(-1/2+(isqrt(3))/(2))^(334)+3(-1/2+(isqrt(3))/(2))^(365) is equal to

Prove that 4+5(-(1)/(2)+(i sqrt(3))/(2))^(334)+3(-(1)/(2)+(i sqrt(3))/(2))^(335)=i sqrt(3)

MCGROW HILL PUBLICATION-COMPLEX NUMBERS -QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER
  1. (5 + i sin theta)/(5-3i sin theta) is a real number when

    Text Solution

    |

  2. Two points P and Q in the Argand diagram represent z and 2z+ 3 +i. If ...

    Text Solution

    |

  3. Let z be a complex number such that |z| = 2, then maximum possible val...

    Text Solution

    |

  4. If i = sqrt(-1), then 4 + 3 (-(1)/(2) + i(sqrt(3))/(2))^(127)+5(-(1)/(...

    Text Solution

    |

  5. The real part of a complex number z having minimum principal argument ...

    Text Solution

    |

  6. Show that the area of the triangle on the Argand diagram formed by the...

    Text Solution

    |

  7. Two circles in the complex plane are {:(C(1) : |z-i|=2),(C(2) : |z-1...

    Text Solution

    |

  8. If z = i(i + sqrt(2)), then value of z^(4) + 4z^(3) + 6z^(2) + 4z is

    Text Solution

    |

  9. Suppose z is a complex number such that z ne -1, |z| = 1 and arg(z) = ...

    Text Solution

    |

  10. If |z(1)| = |z(2)| = |z(3)| = 1 and z(1) + z(2) + z(3) = sqrt(2) + i, ...

    Text Solution

    |

  11. Let S = {z in C: z(iz(1) - 1) = z(1) +1, |z(1)| lt 1}. Then, for all z...

    Text Solution

    |

  12. If (4 + 3i)^(2) = 7 + 24i, then a value of (7 + sqrt(-576))^(1//2) - (...

    Text Solution

    |

  13. Let A = {z in CC: |z| = 25) and B = {z in CC: |z +5+12i|= 4}. Then the...

    Text Solution

    |

  14. If z(1),z(2) and z(3) are three distinct complex numbers such that |z(...

    Text Solution

    |

  15. The locus of the point w = Re(z) + 1/z , where |z|=3, in complex plan...

    Text Solution

    |

  16. Let z(ne -1) be any complex number such that |z| = 1. Then the imagina...

    Text Solution

    |

  17. Let u = (1)/(2) (-1 + sqrt(3)i) and z = u - u^(2) - 2. Then the value ...

    Text Solution

    |