Home
Class 12
MATHS
If alpha,beta are the eccentric angles ...

If `alpha,beta` are the eccentric angles of the extremities of a focal chord of the ellipse `x^(2)/16 + y^(2)/9 = 1`, then tan `(alpha/2) tan(beta/2)`=

A

`(sqrt7+4)/(sqrt7-4)`

B

`-9/23`

C

`(sqrt5-4)/(sqrt5+4)`

D

`(8sqrt7-23)/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan \left( \frac{\alpha}{2} \right) \tan \left( \frac{\beta}{2} \right) \) for the given ellipse \( \frac{x^2}{16} + \frac{y^2}{9} = 1 \). ### Step 1: Identify the parameters of the ellipse The equation of the ellipse can be rewritten as: \[ \frac{x^2}{4^2} + \frac{y^2}{3^2} = 1 \] From this, we identify: - \( a = 4 \) (semi-major axis) - \( b = 3 \) (semi-minor axis) ### Step 2: Calculate the eccentricity \( e \) The eccentricity \( e \) of the ellipse is given by the formula: \[ e = \sqrt{1 - \frac{b^2}{a^2}} \] Substituting the values of \( a \) and \( b \): \[ e = \sqrt{1 - \frac{3^2}{4^2}} = \sqrt{1 - \frac{9}{16}} = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{4} \] ### Step 3: Use the property of focal chords For a focal chord of an ellipse, the relationship between the eccentric angles \( \alpha \) and \( \beta \) is given by: \[ \tan \left( \frac{\alpha}{2} \right) \tan \left( \frac{\beta}{2} \right) = \frac{e - 1}{e + 1} \] ### Step 4: Substitute the value of \( e \) Now, substituting \( e = \frac{\sqrt{7}}{4} \) into the equation: \[ \tan \left( \frac{\alpha}{2} \right) \tan \left( \frac{\beta}{2} \right) = \frac{\frac{\sqrt{7}}{4} - 1}{\frac{\sqrt{7}}{4} + 1} \] ### Step 5: Simplify the expression To simplify, we first find a common denominator: \[ = \frac{\sqrt{7} - 4}{\sqrt{7} + 4} \] ### Step 6: Final answer Thus, the value of \( \tan \left( \frac{\alpha}{2} \right) \tan \left( \frac{\beta}{2} \right) \) is: \[ \frac{\sqrt{7} - 4}{\sqrt{7} + 4} \]
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Numerical Answer)|15 Videos
  • ELLIPSE

    MCGROW HILL PUBLICATION|Exercise Exercise (Single Correct)|15 Videos
  • ELLIPSE

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Level 1 Single Correct Answer)|25 Videos
  • DIFFERENTIAL EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|14 Videos
  • HEIGHTS AND DISTANCES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|3 Videos

Similar Questions

Explore conceptually related problems

IF alpha , beta are eccentric angles of end points of a focal chord of the ellipse x^(2)/a^(2) + y^(2)/b^(2) =1 then tan(alpha /2) tan (beta/2) is equal to

If alpha and beta are eccentric angles of the ends of a focal chord of the ellipse x^2/a^2 + y^2/b^2 =1 , then tan alpha/2 .tan beta/2 is (A) (1-e)/(1+e) (B) (e+1)/(e-1) (C) (e-1)/(e+1) (D) none of these

If alpha, beta are the eccentric angles of the extermities of a focal chord of an ellipse, then eccentricity of the ellipse is

If alpha and beta are the eccentric angles of the extremities of a focal chord of an ellipse,then prove that the eccentricity of the ellipse is (sin alpha+sin beta)/(sin(alpha+beta))

If 2tan alpha=3tan beta then tan(alpha-beta)=

If (a sec alpha,b tan alpha) and (a sec beta ,b tan beta) be the ends of a chord of (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 passing through the focus (ae,0) then tan (alpha/2) tan (beta/2) is equal to

If (alpha-beta)=(pi)/(2) ,then the chord joining the points whose eccentric angles are alpha and beta of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=(1)/(k) , then ( 5k^(2)+2) is equal to

(1+tan alpha tan beta)^(2)+(tan alpha-tan beta)^(2)=

If a chord joining two points whose eccentric angles are alpha and beta so that tan alpha.tan beta=-(a^(2))/(b^(2)), subtend an angle theta at the centre of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then theta=