Home
Class 11
MATHS
y = cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))...

`y = cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))),find dy/dx.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).

If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).

If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).

If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).

Tan^(-1)[(sqrt(1+sinx)-sqrt(1-sinx))/(sqrt(1+sinx)+sqrt(1-sinx))]=

y = Cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] then (dy)/(dx) =

If y(x) = cot^(-1) ((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))), x in ((pi)/(2), pi) , then (dy)/(dx) at x=(5pi)/(6) is :

If y = cot^-1{(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))} 0 dy/dx is independent of x.

Prove that cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)