Home
Class 11
MATHS
Let A = lim(x->-2)(tanpix)/(x+2)+lim(x->...

Let A = `lim_(x->-2)(tanpix)/(x+2)+lim_(x->oo)(1+1/(x^2))^x`. Prove that A>4

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=lim_(xrarr-2)(tanpix)/(x+2)+lim_(xrarroo)(1+(1)/(x^(2)))^(x) , then

lim_(x rarr oo)(1)/(x^(2))

lim_(x rarr oo)(1)/(x^(2))

"lim_(x rarr oo)(1)/(x^(2))

Lim_(x->oo) (2x - 1)/(x + 2)

If l=lim_(xto-2) (tanpix)/(x+2)+lim_(xtooo) ( (1+1)/(x^2)^2) , then which one of the following is not correct?

If l=lim_(xto-2) (tanpix)/(x+2)+lim_(xtooo) ( (1+1)/(x^2)^2) , then which one of the following is not correct?

The value of lim_(x rarr-4)(tan pi x)/(x+4)+lim_(x rarr oo)(1+(1)/(x^(2)))^(x) is

lim_(x rarr oo) (1-2/x)^(x) =

[lim_(x rarr oo)(1+(1)/(x^(2)))^(x)]