Home
Class 14
MATHS
" se."274cos^(-1)p+cos^(-1)q+cos^(-1)r=p...

" se."274cos^(-1)p+cos^(-1)q+cos^(-1)r=pi," तब "p^(2)+q^(2)+r^(2)+2pqr=quad " (A) "3" a."0

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)p+cos^(-1)q+cos^(-1)r=pi then p^(2)+q^(2)+r^(2)+2pqr =

If cos^(-1)p+cos^(-1)q+cos^(-1)r=3pi , then p^(2)+q^(2)+r^(2)+2pqr is equal to

If cos^(-1) p+ cos^(-1) q + cos^(-1) r =pi , then : p^2+q^2+r^2+ 2pqr is :

If Cos^(-1)p+Cos^(-1)q+Cos^(-1)r = pi then, P.T. p^(2)+q^(2)+r^(2) = 2pqr = 1

If cos^(-1)p+cos^(-1)q+cos^(-1)r=pi(0<=p,q,r<=1) then the value of p^(2)+q^(2)+r^(2)+2pqr is

If cos^-1p+cos^-1q+cos^-1r=pi(0 <= p,q,r <= 1). then the value of p^2+q^2+r^2+2pqr is

If cos^(-1)sqrt(p)+cos^(-1)sqrt(1-p)+cos^(-1)sqrt(1-q)=(3pi)/(4)"than :"q=