Home
Class 12
MATHS
If x=2i, y=-4, z=3i, and i=sqrt(-1), the...

If `x=2i, y=-4, z=3i, and i=sqrt(-1)`, then `sqrt(x^(3)yz)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=3i, y=2i, z=m+I, and i=sqrt(-1) , then the expression xy^(2)z=

If x=1+i sqrt(3),y=1-i sqrt(3),z=2 then prove that x^(p)+y^(p)=z^(p) for every prime p>3

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If x+i y=(-1+i sqrt(3))^(2010) , then x=

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

" 2.(i) sqrt(3x+1)-sqrt(x-1)=2