Home
Class 12
MATHS
If the line x=y= z intersect the line ...

If the line `x=y= z` intersect the line `sin A x + sin B y + sin C z=2d^2, sin 2A x + sin 2B y + sin 2Cz=d^2` then `sin(A/2) sin(B/2) sin(C/2)` is equal to (where `A +B+C=pi`)

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line x=y=z intersect the line sin Ax+sin By+sin Cz=2d^(2),sin2Ax+sin2By+sin2Cz=d^(2) then sin((A)/(2))sin((B)/(2))sin((C)/(2)) is equal to (where A+B+C=pi)

If the line x=y=z intersect the line sin A.x+sin B*y+sin C.z=2d^(2),sin2A*x+sin2B*y+sin2C*z=d^(2) then find the value of sin(A)/(2).sin(B)/(2).sin(C)/(2) where A,B,C are the angles of a triangle.

(sin2A + sin2B + sin2C) / (sin A + sin B + sin C) = 8sin ((A) / (2)) sin ((B) / (2)) sin ((C) / (2))

If A+B+C=pi , then sin2A+sin2B-sin2C is equal to

If A+B+C=pi , prove that : (sin 2A+sin 2B + sin 2C)/(sinA+sinB+sinC) = 8 sin(A/2) sin(B/2) sin(C/2)

sin ^ (2) A + sin ^ (2) B-sin ^ (2) C = 2sin A sin B cos C