Home
Class 12
MATHS
Prove that sinx siny sin(x-y)+sinysinz...

Prove that
`sinx siny sin(x-y)+sinysinzsin(y-z)`
`+sinz sinx sin(z-x)+sin(x-y)`
`sin(y -z) sin (z-x) = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that, sinx.siny.sin(x-y) + siny.sinz.sin(y-z) + sinz.sinx.sin(z-x) + sin(x-y).sin(y-z).sin(z-x)=0

The value of sinx siny sin(x-y)+sinysinz sin(y-z) +sinz sinx sin(z-x)+sin(x-y)sin(y-z)sin(z-x), is

Prove that sin x* sin y*sin(x - y) + sin y *sin z*sin(y- z) + sin z *sin x sin(z - x) + sin(x - y) *sin(y - z)*sin(z -x) = 0 .

Prove that : sin x sin y sin (x - y) + sin y sin z sin (y- z)+ sin z sin x sin (z - x) + sin (x - y) sin (y-z)sin (z- x) = 0 .

Prove that, sin x.sin y.sin (xy) + sin y * sin z * sin (yz) + sin z * sin x * sin (zx) + sin (xy) * sin (yz) * sin (zx) = 0

Prove that sin (x + y ) sin (x -y) + sin ( y+ z) sin (y - z) + sin (z+x) sin (z-x) = 0.

sin(x+y)sin(x-y)+sin(y+z)sin(y-z)+sin(z+x)sin (z-x)=0

Show that sin (x-y) + sin (y-z) + sin (z-x) + 4sin((x-y)/(2)) sin( (y-z)/(2)) sin((z-x)/(2)) =0

Show that sin (x-y) + sin (y-z) + sin (z-x) + 4sin((x-y)/(2)) sin( (y-z)/(2)) sin((z-x)/(2)) =0