Home
Class 12
MATHS
यदि sin ^(-1)""(2p)/(1+p^(2))-cos ^(-1)"...

यदि `sin ^(-1)""(2p)/(1+p^(2))-cos ^(-1)""(1-q^(2))/(1+q^(2))=tan ^(-1) ""(2x)/(1-x^(2)),` है तो x किसके बराबर है?

Promotional Banner

Similar Questions

Explore conceptually related problems

sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=

If Sin^(-1)(2p)/(1+p^(2)) - Cos^(-1)((1-q^(2))/(1+q^(2))) = Tan^(-1) (2x)/(1-x^(2)) , then prove that x = (p-q)/(1+pq)

if quad sin^(-1)((2p)/(1+p^(2)))-cos^(-1)((1-q^(2))/(1+q^(2)))=tan^((2 pi)/(1-z^(2))) prove that x=(p-q)/(1+pq) where p,q varepsilon(0,1)

sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] is

sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] is

tan ^(-1)""(1)/(p+q)+tan ^(-1)""(q)/(p^(2)+pq+1)=cot^(-1)p

int((p+q tan^(-1)x))/(1+x^(2))dx

int(dx)/((1+x^(2))sqrt(p^(2)+q^(2)(tan^(-1)x)^(2)))

tan ^ (- 1) ((1) / (p + q)) + tan ^ (- 1) ((a) / (p ^ (2) + q + 1)) = cos ^ (- 1) p