Home
Class 12
MATHS
If x=acos^(3)theta" and "y=bsin^(3)theta...

If `x=acos^(3)theta" and "y=bsin^(3)theta`, then find `(d^(2)y)/(dx^(2))` at `theta=(pi)/(4).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a cos^(3)theta and y=a sin^(3)theta, then find the value of (d^(2)y)/(dx^(2)) at theta=(pi)/(6)

If x = acos^(3)theta , y = a sin^(3)theta ,then find (d^2y)/dx^(2)

If x=acos^(3)theta and y=asin^(3)theta , then (dy)/(dx)=

x=acos^(3)theta,y=asin^(3)theta then find (d^(2)y)/(dx^(2))

x=acos^(3)theta,y=asin^(3)theta then find (d^(2)y)/(dx^(2))

x=acos^(3)theta,y=asin^(3)theta then find (d^(2)y)/(dx^(2))

x=acos^(3)theta,y=asin^(3)theta then find (d^(2)y)/(dx^(2))

x=acos^(3)theta,y=asin^(3)theta then find (d^(2)y)/(dx^(2))

Find (d^(2)y)/(dx^(2)) in the following If x=acos^(3)thetaandy=asin^(3)theta , then find the value of (d^(2)y)/(dx^(2))" at "theta=pi/6 .