Home
Class 12
MATHS
If the straight line lx+my+n=0 touches t...

If the straight line `lx+my+n=0` touches the :
parabola `y^(2)=4ax`, prove that `am^(2)=nl`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line lx+my+n=0 touches the parabola y^(2)=4ax, prove that ln=am^(2)

If the straight line lx + my=1 is a normal to the parabola y^(2)=4ax , then-

The line 4x+6y+9 =0 touches the parabola y^(2)=4ax at the point

The line 4x+6y+9 =0 touches the parabola y^(2)=4ax at the point

Prove that the straight line lx+my+n=0 touches the parabols y^2=4ax , if ln=am^2 .

If the straight line lx+my+n=0 touches the : circle x^(2)+y^(2)=a^(2) , show that a^(2)(l^(2)+m^(2))=n^(2)

The line lx + my + n = 0 will touch the parabola y^(2) = 4ax if am^(2) = nl .

The condition that the line lx+my+n=0 to touch the parabola y^(2)=4ax is

The line lx+my+n=0 is a normal to the parabola y^(2)=4ax if