Home
Class 12
MATHS
" Prove that "int(0)^( pi/2)log cos xdx=...

" Prove that "int_(0)^( pi/2)log cos xdx=(pi)/(2)log(1)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi)log xdx

int_(0)^((pi)/(2))log(cos x)dx=

Show that int_(0)^((pi)/(2))logsinxdx=(pi)/(2)log((1)/(2))=(-pi)/(2)log2

Prove that : int_(0)^(pi//2) x . cot x dx =(pi)/(2)log 2

Prove that: int_(0)^( pi/2)log|tan x+cot x|dx=pi log_(e)2

Prove that int_(0)^(pi/4)log(1+tanx)dx=(pi)/(8) log2.

int_(0)^(pi)log(1+cosx)dx=-pi(log2)

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

Show that int_(0)^((pi)/(2))log(sin2x)dx=-(pi)/(2)(log2)