Home
Class 12
MATHS
The function f(x) =p [x+1] +q [x-1] wher...

The function `f(x) =p [x+1] +q [x-1]` where [x] is the greatest integer function, and `lim _(xto1+) f(x) =lim _(x to 1-) f(x)= f(1)` when-

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=["sinx"/x], x ne 0 , where [.] denotes the greatest integer function then lim_(xto0)f(x)

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

Let f(x) = x(-1)^([1//x]); x != 0 where [.] denotes greatest integer function, then lim_(x rarr 0) f (x) is :

If f(x)=[x], where [x] is the greatest integer function then find f(√2) ,f(3),f(-1.3),f(0),f(-1).

Let f(x)=x(-1)^([1/x]);x!=0 where [.] denotes greatest integer function,then lim_(x rarr0)f(x) is :

Consider the function f(x)=(a^([x]+x)-1)/([x]+x) where [.] denotes the greatest integer function. What is lim_(xto0^(+))f(x) equal to?

Consider the function f(x)=(a^([x]+x)-1)/([x]+x) where [.] denotes the greatest integer function. What is lim_(xto0^(-)) (f(x) equal to?

For the function f(x) = 2 . Find lim_(x to 1) f(x)

For the function f(x) = 2 . Find lim_(x to 1) f(x)

If f(x) = [x] – [x/4] , x ∈ R, where [x] denotes the greatest integer function, then : (1) lim f(x) (x→4-)exists but lim f(x) (x→4+) does not exist. (2) Both lim f(x) (x→4-) and lim f(x) (x→4+) exist but are not equal. (3) lim f(x) (x→4+) exists but lim f(x) (x→4-) does not exist. (4) f is continuous at x = 4.