Home
Class 12
MATHS
" Illustration "8.74" Prove that "int(0)...

" Illustration "8.74" Prove that "int_(0)^(x)e^(xt)e^(-t^(2))dt=e^(x^(2)/4)int_(0)^(x)e^(-t^(2)/4)dt

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(x)e^(xt)e^(-t^(2))dt=e^((z^(2))/(4))int_(0)^(x)e^(-(t^(2))/(4))dt

Prove that int_0^x e^(x t)e^-t^2dt=e^(x^(2)/4)int_0^x e^-(t^(2)/4)dt

Prove that int_0^x e^(x t-t^2) dt=e^(x^(2)/4)int_0^x e^-(t^(2)/4)dt

Prove that int_0^x e^(x t-t^2) dt=e^(x^(2)/4)int_0^x e^-(t^(2)/4)dt

Lt_(x to oo) ((int_(0)^(x) e^(t) dt)^(2))/(int_(0)^(x)e^(2t^(2))dt)

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then