Home
Class 12
MATHS
Given the LPP max Z=2x+3y Subject to...

Given the LPP max Z=2x+3y
Subject to the constraints
`3x+y le3`
`x ge 0, y ge 0`
show that the corner points of the LPP are (0,0) ,(1,0) and (0,3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Maximise Z=3x+4y subject to the constraints x+y le, 4, x ge 0, y ge 0

Maximise Z=3x+4y, Subjected to the constraints x+y le1, x ge 0, y ge 0

Maximise Z=3x+4y, Subjected to the constraints x+y le1, x ge 0, y ge 0

Given the LPP max Z=3x+4y subject ot the constraints 2x+3y le9 x-5yge-20 and x,ygt0 The LPP has

Find maximum value of z=2x+3y subject to the constraints x+y le 4 , x ge 0 , y ge 0 .

Maximise Z = 3x + 4y, subject to the constraints : x+y le 1, x ge 0 .

The max. value of z = 3x + 4y subject to the constraints x + y le 4, x ge 0, y ge 0 is :

The max. value of z = 3x + 5y subject to the constraints x + y le 4, x ge 0, y ge 0 is :

Maximum value of Z = 3x + 4y subject to the constraints x + y le 4, x ge 0, y ge 0 is 16.

The maximum value of Z = 3x + 4y subject to the constraints: x + y le 4, x ge 0, y ge 0 is :