Home
Class 12
MATHS
If u=secx+tanx-1,v=secx-tanx+1," then "u...

If `u=secx+tanx-1,v=secx-tanx+1," then "u'v+v'u=`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(secx+tanx)

inttan^-1(secx+tanx)dx

If y=(secx-tanx)/(secx+tanx), then (dy)/(dx) equals.

If y=(secx-tanx)/(secx+tanx), then (dy)/(dx) equals.

If y=(secx-tanx)/(secx+tanx), then (dy)/(dx) equals.

If y=(secx-tanx)/(secx+tanx), then (dy)/(dx) equals.

If u=(cosx+sinx)/(cosx-sinx)=(1)/(v)," then "u'-v'=

If int(x)/(1+sinx)dx=logu-x(secx-tanx)+c, then u=