Home
Class 12
MATHS
The maximum value of f(x)=x/(1+4x+x^2) i...

The maximum value of `f(x)=x/(1+4x+x^2)` is `-1/4` (b) `-1/3` (c) `1/6` (d) `1/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of f(x)=x/(4-x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5

The maximum value of f(x)=x/(4+x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5

The maximum value of f(x)=x/(4-x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5

the maximum value of f(x)=x/(4+x+x^2) on [-1,1] is (i) -1/4 (ii)-1/3 (iii)1/6 (iv)1/b

The maximum value of f(x)=(x)/(1+4x+x^(2)) on [-1, 1] is :

The maximum value of f(x)=(x)/(4-x+x^(2)) on [-1,1] is (a) (1)/(4)(b)-(1)/(3)(c)(1)/(6)(d)(1)/(5)

Minimum value of f(x)=2x^(2)-4x+5 is 1 (b) -1(c)11 (d) 3

If f(x)=cos(logx), then value of f(x) f(4)-1/2{f(x/4)+f(4x)} is (a) 1 (b) -1 (c) 0 (d) +- 1

The maximum value of the function f(x)=(x^(4)-x^(2))/(x^(6)+2x^(3)-1) where x>1 is equal to:

If X^2+4x+3=0 , then the value of (X^3)/(X^6+27x^3+27 is (A) -1 (B) -frac(1)(2) (C) 1 (D) 1/2