Home
Class 12
MATHS
If ax^(10)=by^(10)=cz^(10) and (1)/(x)+(...

If `ax^(10)=by^(10)=cz^(10)` and `(1)/(x)+(1)/(y)+(1)/(z)=1` then prove that `(ax^(9)+by^(9)+cz^(9))^(1/10)=a^(1/10)+b^(1/10)+c^(1/10)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1)/(9!)+(1)/(10!)=(x)/(11!) then x=

Prove that: (1)/(9!)+(1)/(10!)+(1)/(11!)=(122)/(11!)

If (10)^9+2(11)^1(10)^8 +….+10 (11)^9 = k(10)^9

Prove that If (1)/(9!) +(1)/( 10!) =(x)/( 11!) , Find x.

Prove that: 1/(9!)+1/(10 !)+1/(11 !)=(122)/(11 !)

Prove that . (sin ((1)/(10))/((1)/(10)))gt ((sin ((1)/(9)))/((1)/(9))).

If x^(2) : (by + cz) =y^(2) : (cz + ax) = z^(2) : (ax + by) = 1 , then show that a/(a+x) + b/(b+y) + c/(c+z) = 1 .

If (x^(2))/(by+cz)=(y^(2))/(cz+ax)=(z^(2))/(ax+by)=1 , then value of (a)/(a+x) +(b)/(b+y) +(c )/(c+z) is

Prove that (1+cos(pi/10))(1+cos(3pi/10))(1+cos(7pi/10))(1+cos(9pi/10))=1/16