Home
Class
MATHS
" 2.If "a,b,c" are in G.P.,then show tha...

" 2.If "a,b,c" are in G.P.,then show that "a(b-c)^(2)=c(a-b)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are in G.P then show that a(b^2-c^2)=c(a^2-b^2)

If a,b,c are in G.P., then show that : a(b^2+c^2)=c(a^2+b^2)

If a,b,c are in G.P then show that a(b^2+c^2)=c(a^2+b^2)

If a, b, c are in G.P. then show that b^(2 ) = a.c.

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)

If a, b, c and d are in G.P., show that, (b-c)^(2) + (c-a)^(2)+ (d-b)^(2) = (a-d)^(2) .

If a,b,c,d are in G.P then show that (b-c)^2+(c-a)^2+(d-b)^2=(a-d)^2 .

If a,b,c are in G.P., then show that : (a^2-b^2)(b^2+c^2)=(b^2-c^2)(a^2+b^2)

If a,b,c are in G.P., then show that : (a^2-b^2)(b^2+c^2)=(b^2-c^2)(a^2+b^2)

If a,b,c are in G.P then show that (a+2b+2c)(a-2b+2c)=a^2+4c^2