Home
Class 12
MATHS
" If "f(x)" is differentiable at "x=a" a...

" If "f(x)" is differentiable at "x=a" and "f'(a)=(1)/(4)" .Find "lim_(h rarr0)(f(a+2h^(2))-f(a-2h^(2)))/(h^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(h rarr0)(e^((x+h)^(2))-e^(x^(2)))/(h)

If f'(3)=2, then lim_(h rarr0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is

lim_(h rarr0)((a+h)^(2)sin(a+h)-a^(2)sin a)/(h)

Let f be differentiable at x=0 and f'(0)=1 Then lim_(h rarr0)(f(h)-f(-2h))/(h)=

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

7. lim_(h rarr0)((a+h)^(2)sin(a+h)-a^(2)sin a)/(h)

lim_(h rarr0)(sin^(2)(x+h)-sin^(2)x)/(h)

If f(x) is differentiable EE f'(1)=4,f'(2)=6 then lim_(h rarr0)(f(3h+2+h^(3))-f(2))/(f(2h-2h^(2)+1)-f(1))=

lim_(h rarr0)(tan(a+2h)-2tan(a+h)+tan a)/(h^(3))=

lim_(h rarr0)(log(1+2h)-2log(1+h))/(h^(2))=