Home
Class 12
MATHS
secx dy+secydx=0...

`secx dy+secydx=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of distinct real roots of |(cosecx,secx,secx),(secx, cosecx,secx),(secx,secx ,cose cx)|=0 lies in the interval -pi/4lt=xlt=pi/4 is 1 (b) 2 (c) 3 (d) 0

int_(0)^(pi//2)(secx)/(secx+cosecx)dx=

u=(sinx)^(tanx) , v=(cosx)^(secx) Find dy//dx . if y=(sinx)^(tanx)+(cosx)^(secx)

The number of distinct real roots of |{:(cosec x, secx, secx), (secx, cosecx, secx), (secx, secx, cosecx):}|=0 lies in the interval -pi/4lt=xlt=pi/4 is (a) 1 (b) 2 (c) 3 (d) 0

The number of distinct real roots of |{:(cosec x, secx, secx), (secx, cosecx, secx), (secx, secx, cosecx):}|=0 lies in the interval pi/4lt=xlt=pi/4 is (a) 1 (b) 2 (c) 3 (d) 0

int_(0)^(pi//2)(3secx+5cosecx)/(secx+cosecx)dx=

int secx / (secx+tanx)dx =

If y = log tan (pi/4+x/2) , show that: dy/dx-secx=0

If y = sqrt((secx +tanx)/(secx -tan x)) and 0 lt x lt pi/2 , then dy/dx =

Solve: dy / dx + y secx = tanx