Home
Class 11
MATHS
If bara+barb+barc,then...

If `bara+barb+barc,then`

Promotional Banner

Similar Questions

Explore conceptually related problems

The volume of parallelopiped with vectors bara+2barb-barc,bara-barb,bara-barb-barc as coterminous edges is K[bara barb barc] then abs(K) =

bara,barb,barc are non-coplanar and barl=(barbxxbarc)/([bara barb barc]),barm=(barcxxbara)/([bara barb barc]),barn=(baraxxbarb)/([bara barb barc]) then (bara+barb+barc).(barl+barm+barn)=

If bara, barb, barc are non-coplanar vectors, then |(bara*bara,barb*barb,bara*barc),(barb*bara,barb*barb,barb*barc),(barc*bara,barc*barb,barc*barc)|=

Let bara ,barb,barc be non coplanar vectors and bara^(1)=(barbxxbarc)/([bara barb barc]),barb^(1)=(barcxxbara)/([bara barb barc]) and barc^(1)=(baraxxbarb)/([bara barb barc]) then prove that (bara+barb+barc).(bara^(1)+barb^(1)+barc^(1))=3

If bara, barb,barc are non-coplanar vectors, then (bara+barb+barc).(bara+barb)xx(bara+barc)=

Let bara,barb and barc be non coplanar vectors if [2bara-barb+3barc,bara+barb-2barc,bara+barb-3barc]=lamda[bara barb barc] then find lamda .

Let bara ,barb,barc be non coplanar vectors and bara^(1)=(barbxxbarc)/([bara barb barc]),barb^(1)=(barcxxbara)/([bara barb barc]) and barc^(1)=(baraxxbarb)/([bara barb barc]) then prove that bara.bara^(1)=barb.barb^(1)=barc.barc^(1)=1

If bara,barb,barc are three non-coplanar vectors and barp,barq,barr are defined by the relations barp=(barbxxbarc)/(bara barb barc),barq=(barcxxbara)/(bara barb barc),barr=(baraxxbarb)/(bara barb barc) then (bara+barb).barp+(barb+barc).barq+(barc+bara).barr=

If bara, barb, barc are three non-coplanar vectors, barp=(barbxxbarc)/([bara barb barc]),barq=(barcxxbara)/([bara barb barc]),barr=(baraxxbarb)/([bara barb barc]) then (bara+barb).barp+(barb+barc).barq+(barc+bara).barr =