Home
Class 11
MATHS
If a , ba n dc are the side of a triangl...

If `a , ba n dc` are the side of a triangle, then the minimum value of `(2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s` 3 (b) 9 (c) 6 (d) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

If a , ba n dc are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

If a , ba n dc are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

If a , b and c are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

If a,b and c are the side of a triangle,then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c) is 3 (b) 9(c)6(d)1

If a,b,c are the sides of a triangle,then the minimum value of (a)/(b+c-a)+(b)/(c+a-b)+(c)/(a+b-c) is equal to (a)3(b)6(c)9(d)12

If a ,b ,c are the sides of a triangle, then the minimum value of a/(b+c-a)+b/(c+a-b)+c/(a+b-c) is equal to (a) 3 (b) 6 (c) 9 (d) 12

If a ,b ,c are the sides of a triangle, then the minimum value of a/(b+c-a)+b/(c+a-b)+c/(a+b-c) is equal to (a) 3 (b) 6 (c) 9 (d) 12

If a,b,c,d are the side of a quadrilateral, then find the the minimum value of (a^(2)+b^(2)+c^(2))/(d ^(2))