Home
Class 12
MATHS
[" 1.If "A=[[1,0,0],[0,1,1],[0,-2,4]]" a...

[" 1.If "A=[[1,0,0],[0,1,1],[0,-2,4]]" and "6A^(-1)=A^(2)+cA+dI" ,"],[" where "A^(-1)" is inverse of "A,I" is the identity matrix,"]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[1,0,0],[0,1,1],[0,-2,4]] and 6A^(-1)=A^2+cA+dI . Then c+d is

If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI) , where c, din R and I is an identity matrix of order 3, then (c, d)=

If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

If A = [(1,0,0), (0,1,1), (0, -2,4)], 6A ^ -1 = A ^ 2 + cA + dI, then (c, d) =

If A = [(1,0,0),(0,1,1),(0,-2,4)] and also A^(-1)=1/6 (A^(2)+cA+dI) , where I is unit matrix , then the ordered pair (c,d) is :

A=([1,0,0],[0,1,1],[0,-2,4])" and if "A^(-1)=(1)/(6)[alpha A^(2)+beta A+gamma I]" when "I" is unit matrix of order "3" then the value of "alpha+beta+gamma" is "

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.

If A=[[1,0,-32,1,30,1,1]], then verify that A^(2)+A=A(A+I), where I is the identity matrix.