Home
Class 12
MATHS
(d)/(dx)log(|x|)e=...

(d)/(dx)log_(|x|)e=

Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx)log_|x|e=

d/(dx)log_|x|e=

The differentiation of log_(a)x(a>0,a)*!=1 with respect to x is (1)/(x log_(a)a) i.e.(d)/(dx)(log_(a)x)=(1)/(x log_(a)a)

if (d)/(dx)(log_(e)x)=(1)/(x) then (d)/(dx)(log_(10)x)

If (d)/(dx)(log_(e)x)=(1)/(x) then (d)/(dx)(log_(10)x)=

The differentiation of log _(e)x,x>0is(1)/(x)* i.e.(d)/(dx)(log_(e)x)=(1)/(x)

(d)/(dx)[log_(e)e^(sin(x^(2)))] is equal to

(d)/(dx)[log_(e)e^(sin(x^(2)))]= ......

(d)/(dx)[log((x)/(e^(tan x)))]=