Home
Class 12
MATHS
If cosy=xcos(a+y),(ane0), then show that...

If `cosy=xcos(a+y),(ane0)`, then show that `(dy)/(dx)=(cos^2(a+y))/(sina)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

if cos y=x cos (a+y), (a!= 0) , then show that dy/dx= cos ^2(a+y)/sin a

If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(sina)dot

If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(sina)dot

If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(sina)dot

If sin y = x sin (a + y) then show that (dy)/(dx)=(sin^2(a+y))/(sina)

If xcos(a+y)=cosy , then prove that (dy)/(dx)=(cos^(2)(a+y))/(sina) . Hence, show that sina(d^(2)y)/(dx^(2))+sin2(a+y)dy/dx=0 .

If cosy=xcos(a+y) , with cosa!=+-1 , prove that (dy)/(dx)=(cos^2(a+y))/(sina) .

If cosy=xcos(a+y) , with cosa!=+-1 , prove that (dy)/(dx)=(cos^2(a+y))/(sina) .

If cosy=xcos(a+y) , where cosa!=-1 , prove that (dy)/(dx)=(cos^2(a+y))/(sina)