Home
Class 12
MATHS
If f(x)=(1)/(x) , prove that , underset...

If `f(x)=(1)/(x)` , prove that , `underset(hrarr0)"lim"(f(2+h)-f(2))/(h)=-(1)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(hrarr0)"lim"(3h^(2)-2h)/(h)= ?

If f(x)=ax^(2)+bx+c , show that , underset(hrarr0)"lim"(f(x+h)-f(x))/(h)=2ax+b

Prove that underset(hrarr0)"lim"(root3(x+h)-root3(x))/(h)=(1)/(3)x^(-2/3)

show : underset(hrarr0)"lim"(root(3)(h+1)-1)/(h)=(1)/(3)

Evaluate : underset(hrarr0)"lim"(e^(5h)-1)/(3h)

Evaluate : underset(hrarr0)"lim"(f(1+h)-f(1))/(2h) , " where" f(x) =(1)/(x) .

Evaluate : underset(hrarr0)"lim"e^(2)h^(2-3h+2)

Prove : underset(hrarr0)"lim"(sec(x+h)-secx)/(h)=sec x tanx

If f(a) exists, prove, that lim_(hrarr0)(f(a+h)-f(a-h))/(2h)=f'(a)

If f(x) =1/x , then show that lim_(hrarr0)(f(2+h)-f(2))/h=-1/4