Home
Class 12
MATHS
Determine whether function, f(x)=(-1)^([...

Determine whether function, `f(x)=(-1)^([x])` is even, odd or neither of two (where `[*]` denotes the greatest integer function).

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

Determine whether the function f(x)=a^(x)-a^(-x)+sinx is even or odd.

Find out whether the given function is even,odd or neither f(x)={x|x|x =1,[.] denotes the greatest integer function.

Examine whether the following function are even or odd or neither even nor odd, where [ ] denotes greatest integer function. f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2))

Examine whether the following function are even or odd or neither even nor odd, where [ ] denotes greatest integer function. f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2))

Examine whether the following function are even or odd or neither even nor odd, where [ ] denotes greatest integer function. f(x)=((1+2^(x))^(7))/(2^(x))

Examine whether the following function are even or odd or neither even nor odd, where [ ] denotes greatest integer function. f(x)=((1+2^(x))^(7))/(2^(x))

Examine whether the following function are even or odd or neither even nor odd, where [ ] denotes greatest integer function. f(x)=(sec x+x^(2)-9)/(x sin x)