Home
Class 12
MATHS
" The function "f(x)={[|2-3x|[x],,x>=1],...

" The function "f(x)={[|2-3x|[x],,x>=1],[sin((pi x)/(2)),,x<1]}" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the function f(x)={|2x-3|[x],quad x>=1sin((pi x)/(2)),quad x is continuous but not differentiable at x=1

Separate the intervals of monotonocity of the function: f(x)=-sin^(3)x+3sin^(2)x+5,x in[-(pi)/(2),(pi)/(2)]

The period of the function f(x)=sin((2x+3)/(6pi)) , is

The period of the function f(x)=sin((2x+3)/(6pi)) , is

The greatest value of the function f(x)=(sin2x)/(sin(x+(pi)/(4))) on the interval [0,(pi)/(2)] is

The domain of the function f(x)=(sin^(-1)(3-x))/("In"(|x|-2)) is

The domain of the function f(x)=(sin^(-1)(3-x))/("In"(|x|-2)) is

Find the value of 'a' for which the function f defined as f(x) = {(a sin""(pi)/(2)(x+1)",",x le 0),((tan x - sin x)/(x^(3))",", x gt 0):} is continuous at x = 0.

An extremum of the function f(x)=(2-x)/(pi)cos pi(x+3)+(1)/(pi^(2))sin pi(x+3),0x<4 occurs at x=1 (b) x=2x=3 (d) x=pi

Separate the intervals of monotonocity of the function: f(x)=-sin^3x+3sin^2x+5,x in [-pi/2,pi/2]dot