Home
Class 12
MATHS
The value of (sum(r=0)^n nCrsin2pix)/(...

The value of `(sum_(r=0)^n nC_rsin2pix)/(sum_(r=0)^n nC_rcos2pix` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (sum_(r=0)^(n)nC_(r)sin2 pi x)/(sum_(r=0)^(n)nC_(r)cos2 pi x) is equal to

sum_(r=0)^(n)nC_(r)(sin rx) is equal to

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to (a) 4^(n)-3^(n)+1 (b) 4^(n)-3^(n)-1 (c) 4^(n)-3^(n)+2 (d) 4^(n)-3^(n)

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to (a) 4^(n)-3^(n)+1 (b) 4^(n)-3^(n)-1 (c) 4^(n)-3^(n)+2 (d) 4^(n)-3^(n)

If (1+x)^n=sum_(r=0)^n .^nC_r x^r then sum_(r=m)^n .^rC_m is equal to

sum_(r=0)^(n)nC_(r)sin rx*cos(n-r)x s equal to

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

The value of sum_(r=1)^(n)(sum_(p=0)^(n)nC_(r)^(r)C_(p)2^(p)) is equal to

Evaluate sum_(r = 0)^(n) 3^r ""^nC_r