Home
Class 12
MATHS
y=e^(sin^-1x) এবং z=e^(-cos^-1x) হলে প্র...

`y=e^(sin^-1x)` এবং` z=e^(-cos^-1x)` হলে প্রমাণ করো যে, `dy/dz` এর মান` x `এর ওপর নির্ভর করে না।

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(sin^(-1)x)+e^(cos^(-1)x),0ltxlt1 , then

If y=sin^-1x and z=2cos^-1x , find dy/dz .

If y=e^("sin"^(-1)x)andz=e^(-"cos"^(-1)x) , prove that dy/(dz)=e^(pi//2) .

If y=(a^(cos^-1x))/(1+a^(cos^-1x)) and z= a^(cos^-1x) , then dy/dz=

Find dy/dx : y = e^(Sin^(-1_x)

If y= e^(sin^(-1)x) and z=e^(-cos^(-1)x) , prove that the value of (dy)/(dz) independent of x.

If y=e^(x)(sin x +cos x) , then find dy/dx .

If y=sin^(-1)xandz=cos^(-1)(sqrt(1-x^(2))) , then (dy)/(dz) is equal to

If y=(sin^(-1)x-cos^(-1)x)/(sin^(-1)x+cos^(-1)x)," then "(dy)/(dx)=