Home
Class 12
MATHS
The solution the differential equation (...

The solution the differential equation `(dy/dx)^2 - (dy/dx)(e^x+e^(-x)) + 1 = 0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the solutions of the differential equation ((dy)/(dx))^2 - (dy)/(dx)(e^x + e^-x) + 1 =0 ?

The solution of the differential equation (dy)/(dx) = e^(x+y) is

The solution of the differential equation (dy)/(dx)=e^(x+y) is

The solution of the differential equation (dy)/(dx)-e^(x-y)=1 is

The solution of the differential equation (dy)/(dx)=e^(x-y)+1 is

Match the following {:(,"List-I",,"List-II",),((1),"The equation of family of curves for which",(a),y+e^(-x) = " c, y " - e^(x) = c,),(,"length of the normal = The radius vector.",,,),((2),"Solution of the differential equation " ((dy)/(dx))^(2) - (dy)/(dx)(e^(x)+e^(-x))+1=0 " is",(b),y = x cot (x+c),),((3),"The solution of " (xdy)/((x^(2)+y^(2))) = ((y)/(x^(2)+y^(2))-1)dx " is",(c),y^(2)+- x^(2) = k^(2),),(,,(d),e^(y)=e^(x)-1,):}

The solution of the differential equation (dy)/(dx) = e ^(x) +1 is

The solution of the differential equation (dy)/(dx)=e^(2x+y) is