Home
Class 11
MATHS
यदि रेखा (x)/(a)+(y)/(b)=1 पर मुलबिन्दु ...

यदि रेखा `(x)/(a)+(y)/(b)=1` पर मुलबिन्दु से खींचे गए लम्ब की लम्बाई p हो तो दर्शाइए की
`(1)/(p^(2))=(1)/(a^(2))+(1)/(b^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If p is the length of the perpendicular from the origin to the line (x)/(a) + (y)/(b) = 1, "then prove that " (1)/(p^(2)) = (1)/(a^(2)) + (1)/(b^(2))

If "P" is the distance from the origin to (x)/(a)+(y)/(b)=1 then (1)/(a^(2))+(1)/(b^(2))

Transform the equation (x)/(a)+(y)/(b)=1 into normal form when a>0 and b>0 .If the perpendicular distance from origin to the line is p then deduce that (1)/(p^(2))=(1)/(a^(2))+(1)/(b^(2))

if P is the length of perpendicular from origin to the line (x)/(a)+(y)/(b)=1 then prove that (1)/(a^(2))+(1)/(b^(2))=(1)/(p^(2))

If P(A) = (1)/(2), P(B) = (1)/(3) and P(A nn B) = (1)/(4) then P(B/A)

If P(A) = (1)/(2), P(B) = (1)/(3) and P(A nn B) = (1)/(4) then P(B/A)

1.If P(A)=(1)/(2),P(B)=0 ,then find P((A)/(B)) .

If a,b,c are in G.P. and a,x,b,y,c are in A.P., prove that : (1)/(x)+(1)/(y)=(2)/(b)

If P(A)= (1)/(2), P((B)/(A)) = (1)/(3), P((A)/(B))= (2)/(5) , find P(B)