Home
Class 12
MATHS
The tangent to the curve y=e^(2x) at the...

The tangent to the curve `y=e^(2x)` at the point (0,1) meets X-axis at

Promotional Banner

Similar Questions

Explore conceptually related problems

Where does the tangent to the curve y=e^(x) at the point (0,1) meet x-axis?

The tangent to the curve y=e^(k x) at a point (0,1) meets the x-axis at (a,0), where a in [-2,-1] . Then k in (a) [-1/2,0] (b) [-1,-1/2] [0,1] (d) [1/2,1]

The tangent to the curve y=e^(k x) at a point (0,1) meets the x-axis at (a,0), where a in [-2,-1] . Then k in (a) [-1/2,0] (b) [-1,-1/2] [0,1] (d) [1/2,1]

The tangent to the curve y=e^(k x) at a point (0,1) meets the x-axis at (a,0), where a in [-2,-1] . Then k in [-1/2,0] (b) [-1,-1/2] [0,1] (d) [1/2,1]

The tangent to the curve y=e^(k x) at a point (0,1) meets the x-axis at (a,0), where a in [-2,-1] . Then k in [-1/2,0] (b) [-1,-1/2] [0,1] (d) [1/2,1]

The tangent to the curve y=e^(k x) at a point (0,1) meets the x-axis at (a,0), where a in [-2,-1] . Then k in [-1/2,0] (b) [-1,-1/2] [0,1] (d) [1/2,1]

The tangent to the curve y = e^(2x) at (0,1) meets the x-axis at