Home
Class 12
MATHS
int(0)^( pi/2)sin2x*tan^(-1)(sin x)dx=...

int_(0)^( pi/2)sin2x*tan^(-1)(sin x)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sin 2x .tan^(-1)(sin x)dx=

int_(0)^(pi/2) sin 2x tan^(-1) (sin x) dx

int_(0)^(pi/2) sin 2x tan^(-1) (sin x) dx

Evaluate: int_0^(pi/2) (sin2x tan^(-1)(sinx))dx

Evaluate: int_0^(pi/2) (sin2x tan^(-1)(sinx))dx

Evaluate: \int_{0}^((pi)/2)sin 2x tan^(-1)(sin x) dx

int_(0)^(pi/2) sin^(-1)(sin x)dx

Prove that int_(0)^(pi//2) tan^(-1)(sin x) .sin 2x = (pi)/(2)-1

int_(0)^(pi//2)tan^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]\ dx