Home
Class 12
MATHS
" 1."lim(x rarr4)((x^(3)-64)/(x^(2)-16))...

" 1."lim_(x rarr4)((x^(3)-64)/(x^(2)-16))

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limits: lim_(xrarr4)((x^(3)-64)/(x^(2)-16))

Evaluate the following limit: (lim)_(x rarr4)(x^(3)-64)/(x^(2)-16)

lim_(x rarr0)((4+x)^(3)-64)/(x)

lim_(x rarr4)(sin(x-1))/(x^(3)-1)

Let a= lim _(x rarr 1) (x/(lnx)-1/(xln x)), b = lim _(x rarr 0) ((x^(3)-16x)/(4x+x^(2))), c= lim _(x rarr 0) ((ln(1+sinx))/x) & d = lim _(x rarr -1) ((x+1)^(3))/(3([sin (x+1) - (x+1)])) Then [[a,b],[c,d]] is

lim_(x rarr4)((x^(3//2)-8)/(x-4)) =

lim_(x rarr0)((1+x)^(4)-1)/(x)

lim_(x rarr0)((1+x)^(4)-1)/(x)

let a=lim_(x rarr1)((x)/(ln x)-(1)/(x ln x)),b=lim_(x rarr0)((x^(3)-16x)/(4x+x^(2))),c=lim_(x rarr0)(ln(1+sin x))/(x) and d=lim_(x rarr-1)((x+1)^(3))/(3[sin(x+1)-(x+1)]) then the matrix [[a,bc,d]]

lim_(x rarr4)(sqrt(x)-2)/(x-4)=