Home
Class 12
MATHS
If u,v,w are non-coplanar vectors and p,...

If u,v,w are non-coplanar vectors and p,q are real numbers, then the equality [3u pv pw] - [pv w qw] - [2w qv qu] = 0 holds for

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec u , vec nu , and vec w are non coplanar vectors and p,q are real numbers, then the equality [3 vec u p vec nu p vec w]-[p vec nu vec w q vec u]-[2 vec w q vec nu q vec u] = 0 holds for

If vec u , vec v , vec w are noncoplanar vectors and p, q are real numbers, then the equality [3 vec u ,""p vec v , p vec w]-[p vec v ,"" vec w , q vec u]-[2 vec w ,""q vec v , q vec u]=0 holds for (A) exactly one value of (p, q) (B) exactly two values of (p, q) (C) more than two but not all values of (p, q) (D) all values of (p, q)

If vec u , vec v , vec w are noncoplanar vectors and p, q are real numbers, then the equality [3 vec u ,""p vec v , p vec w]-[p vec v ,"" vec w , q vec u]-[2 vec w ,""q vec v , q vec u]=0 holds for (A) exactly one value of (p, q) (B) exactly two values of (p, q) (C) more than two but not all values of (p, q) (D) all values of (p, q)

vec(u),vec(v) and vec(w) are not co-planar vectors and p and q are real numbers. If [3vec(u),p vec(v),p vec(w)]-[p vec(v),vec(w),q vec(u)]-[2vec(w),q vec(v),q vec(u)]=0 then ……………