Home
Class 10
MATHS
x^(2)-6x-91...

`x^(2)-6x-91`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that if one of the roots of the equation of the quadratic polynomial x^(2)-6ax-91=0 be 7, then the another root is (-13).

Simplify (x+2)(x^(2)-6x+8)-(2x-3)(2x^(2)-x-1)

f(x)=x^(2)+(1)/(x^(2))-6x-(6)/(x)+2 then min value of f(x)

6x^(2)-x-x=0

(x^(2)-x-6)/(x^(2)+6x))>=0

Subtract 6x^(3) -5x^(2)+4x-3 from the sum x+2x^(2)-3x^(3) and 2-x^(2)+6x-x^(3) .

f(x)=x^2+1/(x^2)-6x-6/x+2 then min value of f(x)

Evaluate: (lim)_(x rarr2)(x^(3)-6x^(2)+11x-6)/(x^(2)-6x+8)

Simplify: 4x^(3)-2x^(2)+5x-1+8x+x^(2)-6x^(3)+7-6x+3-3x^(2)-x^(3)