Home
Class 11
MATHS
If cos A=4/(5), cosB=12/13 and (3pi)/2 <...

If `cos A=4/(5), cosB=12/13` and `(3pi)/2 < A, B < 2pi` then find the value of `cos(A+B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinA=4/5,cosB=(-12)/13 and (pi)/2ltA,Bltpi , Find sin(A-B)

If sinA=4/5,cosB=(-12)/13 and (pi)/2ltA,Bltpi , Find sin(A-B)

If cosA=4/5 and cosB=12/13 , then find the values of cos(A+B) and sin(A-B) , where A , B ((3pi)/(2) to 2pi ) .

If cosA=4/3 and cosB=12/13 , then find the values of cos(A+B) and sin(A-B) , where (3pi)/(2) lt A, B lt 2pi .

If cos theta=12/13 , and (3pi)/2 le theta lt 2pi , then tan theta = ?

If sinA=3/5, cosB=-12/13 , where A in (0,pi/2) B in (pi,(3pi)/2) ,then evaluate the following: i) sin(A-B) ii) cos(A-B) iii) tan(A+B)

If sinA=3/5, cosB=-12/13 , where A in 0,pi/2[,B in]pi,(3pi)/2 ,then evaluate the following: i) sin(A-B) ii) cos(A-B) iii) tan(A+B)

If sinA = 3/5, cosB = 12/13, where A and B both lie in second quadrant, then the value of sin (A + B) is -

If cosA = 12/13 , cosB = 5/13, then find a:b.

If sinA=1/2,cosB=(12)/(13), w h e r e pi/2ltaltpia n="" d(3pi)="" 2ltblt2pi="" ,="" find="" tan(a-b)dot