Home
Class 12
MATHS
If z satisfies the equation ((z-2)/(z+2)...

If z satisfies the equation `((z-2)/(z+2))((barz-2)/(barz+2))=1`, then minimum value of `|z|` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

If a complex number z satisfies |z|^(2)+(4)/(|z|)^(2)-2((z)/(barz)+(barz)/(z))-16=0 , then the maximum value of |z| is

If z_(1) = 3+4i and z_(2) = 2+i , and z satisfy the equation 2(z+bar(z)) + 3(z-bar(z))i = 0 , Then for Minimum value of |z-z_(1)| + |z-z_(2)| , possible value of z can be

If complex number z(z!=2) satisfies the equation z^(2)=4z+|z|^(2)+(16)/(|z|^(3)) ,then the value of |z|^(4) is

Solve the equation z^(3) = barz (z ne 0)

If z is a complex number satisfying |z^(2)+1|=4|z| , then the minimum value of |z| is

If |z+barz|=|z-barz| , then value of locus of z is

The number of jsolutions of the equation z^(2)+barz=0, is

Let A(z_(1)) and B(z_(2)) are two distinct non-real complex numbers in the argand plane such that (z_(1))/(z_(2))+(barz_(1))/(z_(2))=2 . The value of |/_ABO| is

If |z+barz|+|z-barz|=2 , then z lies on