Home
Class 12
MATHS
Find the inverse of matrix A=[[1,1,1],[2...

Find the inverse of matrix `A=[[1,1,1],[2,-1,-1],[0,2,1]]` hence solve the system of linear equations :
`x+y+z=2`
`2x-y-z=4`
`2y+z=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[1,-1,12,1,-31,1,1]], find A^(-1) and hence solve the system of linear equation.x+2y+z=4,-x+y+z=0,x-3y+z=2

If matrix A=[[2,1,-3],[3,2,1],[1,2,-1]] . Find A^(-1) and hence solve the system of equation 2x+y–3z=13, 3x+2y+z=4, x+2y-z=8

If matrix A=[[2,3,1],[1,2,2],[-3,1,-1]] Find A^(-1) and hence solve the system of equation 2x+y-3z=13,3x+2y+z=4,x+2y-z=8

The system of linear equations x+y+z =2, 2x+3y+2z = 5 2x +3y+ (a^(2)-1)z = a + 1

If matrix A=|[2,3,1],[1,2,2],[-3,1,-1]| Find A^(-1) and hence solve the system of equation 2x+y-3z=13,3x+2y+z=4,x+2y-z=8

Compute A^(-1) for the following matrix A=[(-1,2,5),(2,-3,1),(-1,1,1)] . Hence solve the system of equations -x+2y+5z=2, 2x-3y+z=15 & -x+y+z= -3

Using elementary transformations, find the inverse of the matrix A=(8 4 3 2 1 1 1 2 2) and use it to solve the following system of linear equations : 8x+4y+3z=19 2x+y+z=5 x+2y+2z=7

If A=[[1,3,4],[2,1,2],[5,1,1]] , find A^(-1) . Hence solve the system of equations : x+3y+4z=8, 2x+y+2z=5 and 5x+y+z=7

If A=[[2,3,4],[1,-1,0],[0,1,2]] , find A^(-1) . Hence, solve the system of equations x-y=3, 2x+3y+4z=17, y+2z=7

If [(1,2,0),(-2,-1,-2),(0,-1,1)], find A^-1. Using A^-1, solve the system of linear equations x-2 y=10,2 x-y-z=8,-2 y+z=7.