Home
Class 12
MATHS
If tan^(-1) (y/x) = log sqrt(x^(2) + y^(...

If `tan^(-1) (y/x) = log sqrt(x^(2) + y^(2))`, prove that `dy/dx = (x+y)/(x-y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((a)/(x))+log sqrt((x-a)/(x+a)), Prove that (dy)/(dx)=(2a^(3))/(x^(4)-a^(4))

If y = x^y , prove that (dy)/(dx) = (y^2)/(x(1 - y log x))

If tan ^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a, prove that (dy)/(dx)=(x)/(y)((1-tan a))/((1+tan a))

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If log sqrt(x^2 + y^2) = tan^-1 (y//x) , then show that dy/dx = (x+y)/(x-y)

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If log ((x^(2) -y^(2))/( x^(2)+ y^(2))) =a, Prove that (dy)/(dx) =(y)/(x).

If y = log ( sqrt( sin x - cos x)) , that prove that (dy)/(dx) = - (1)/(2) tan ((pi)/( 4) + x)