Home
Class 11
MATHS
lim(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e ...

`lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot]` represents the greatest integer function). (a)`-1` (b) `1` (c) `0` (d) does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

Evaluate: ("lim")_(xvec0)(sinx)/x,w h e r e[dot] represents the greatest integer function.

Evaluate: int_0^(100)(x-[x]dx(w h e r e[dot] represents the greatest integer function).

f:(2,3)vec(0,1)d efin e db yf(x)=x-[x],w h e r e[dot] represents the greatest integer function.

f:(2,3)vec(0,1)d efin e db yf(x)=x-[x],w h e r e[dot] represents the greatest integer function.

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).