Home
Class 12
MATHS
If sin A = 1/sqrt(5), cos B = 3/sqrt(10)...

If sin A = 1/`sqrt(5)`, cos B = 3/`sqrt(10)`, A, B being positive acute angles, then what is (A + B) equal to ?

Promotional Banner

Similar Questions

Explore conceptually related problems

In sinA= 1/sqrt5, cosB= 3/sqrt10 , A, B being positive acute angles, then what is (A + B) equal to ?

If sin A=(1)/(sqrt(10)) and sin B=(1)/(sqrt(5)), where A and B are positive acute angles,then A+B is equal to

If sin A=1/sqrt10 and sin B=1/sqrt5 , where A and B are positive acute angles, then A+B=

If sin A = 1/sqrt10 and sin B =1/sqrt5 , where A and B are positive acute angles, then A + B is equal to.................. A) pi B) pi/2 C) pi/3 D) pi/4

If sin A=1//sqrt(10), sin B= 1//sqrt(5) where A and B are positive and acute , then A +B=

If sin A=(2)/(sqrt(5)) and cos B=(1)/(sqrt(10)), where A and B are acute angles,then what is the value of A+B

If sinA=(1)/(sqrt(10))andsinB=(1)/(sqrt(5)) , where A and B are positive acute angles, then A+B=?

If sin alpha = 1/sqrt10, cos beta = 2/sqrt5 "and" alpha, beta are positive acute angles, then find the value of (alpha + beta)