Home
Class 12
MATHS
((1+i)^2016)/(1-i)^2014=...

`((1+i)^2016)/(1-i)^2014`=

Promotional Banner

Similar Questions

Explore conceptually related problems

For x in R, x ne -1 , if (1+x)^(2016)+x(1+x)^(2015)+x^(2)(1+x)^(2014)+……+x^(2016) = sum_(i=0)^(2016)a_(i)*x^(i) , then a_(17) is equal to

FOr xin r, x != -1 , If (1+x)^(2016)+x(1+x)^(2015)+x^2(1+x)^(2014)+.......+x^(2016)=sum_(i=0)^2016 a_i x^i , then a_17 is equal to -

Let x,x_(2),...,x_(2014) be real number different from 1, such that x_(1)+x_(2)+......+x_(2014)=1 and (x_(1))/(1-x_(1))+(x_(2))/(1-x_(2))+......+(x_(2014))/(1-x_(2014)) what is value (x_(1)^(2))/(1-x_(1))+(x_(2)^(2))/(1-x_(2))+...+(x^(2)2014)/(1-x_(2014))=?

((1+i)/(1-i))^4+((1-i)/(1+i))^4=

FOr xi nr,x!=-1, If (1+x)^(2016)+x(1+x)^(215)+x^(2)(1+x)^(2014)++x^(2016)=sum_(i=0)^(2016)a_(i)x^(i), then a_(17) is equal to -

Imaginary part of (sqrt3-i)^(2016)+(-sqrt3-i)^(2019) is

The value of the integral I=int_((1)/(2014))^(2014)(tan^(-1)x)/(x)dx is

If A=[[-4,-13]] ,then the determinant of the matrix (A^(2016)-2A^(2015)-A^(2014)) is (A) 2014(B)-175(C)2016(D)-25

A=[(-4,-1),(3,1)] then the determinant of the matrix (A^(2016)-2.A^(2-15)-A^(2014)) is

The function f(x)=int_(-2015)^(x)t(e^(t)-e^(2))(e^(t)-1)(t+2014)^(2015)(t-2015)^(2016)(t-2016)^(2017) dt has