Home
Class 12
MATHS
if 2^x+2^y=2^(x+y) then the value of (dy...

if `2^x+2^y=2^(x+y)` then the value of `(dy)/(dx)` at `x=y=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(x) + 2^(y) = 2^(x + y) , then the value of (dy)/(dx) at (1,1) is equal to

If 2^(x) + 2^(y) = 2^(x+y) , then the value dy/dx at x = y =1 is

If x^(y). y^(x)=16 , then the value of (dy)/(dx) at (2, 2) is

If x^(y). y^(x)=16 , then the value of (dy)/(dx) at (2, 2) is

If x sqrt(1-y^(2))+y sqrt(1-x^(2))=k , then the value of (dy)/(dx) at x=0 is -

If y=1+(x)/(|_(1))+(x^(2))/(|_(2))+......+(x^(n))/(|_(n))+ then the value of (dy)/(dx)-y=

If y=e^((5)/(x))(2x^(2)-1)^((1)/(2)) then the value of ((dy)/(dx))/(y) is

If y =sqrtx +(1)/(sqrtx), then the value of (2x (dy)/(dx)+y) is-

if y=(2-x)(3-x)^((1)/(2))(1+x)^(-(1)/(2)) then the value of ([(dy)/(dx)])/(y) is

If sin^(-1)((x^2-y^2)/(x^2+y^2)) = tan^(-1)a, then the value of dy/dx is (i)x/y (ii)-x/y (iii)y/x (iv) -y/x